

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4726

Further Pure Mathematics 2

Monday 16 JANUARY 2006 Morning 1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- There is an insert for use in Question 4.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 (i) Write down and simplify the first three non-zero terms of the Maclaurin series for ln(1 + 3x). [3]
 - (ii) Hence find the first three non-zero terms of the Maclaurin series for

$$e^x \ln(1+3x)$$
,

simplifying the coefficients.

[3]

- Use the Newton-Raphson method to find the root of the equation $e^{-x} = x$ which is close to x = 0.5. Give the root correct to 3 decimal places. [5]
- 3 Express $\frac{x+6}{x(x^2+2)}$ in partial fractions. [5]
- 4 Answer the whole of this question on the insert provided.

The sketch shows the curve with equation y = F(x) and the line y = x. The equation x = F(x) has roots $x = \alpha$ and $x = \beta$ as shown.

- (i) Use the copy of the sketch on the insert to show how an iteration of the form $x_{n+1} = F(x_n)$, with starting value x_1 such that $0 < x_1 < \alpha$ as shown, converges to the root $x = \alpha$. [3]
- (ii) State what happens in the iteration in the following two cases.
 - (a) x_1 is chosen such that $\alpha < x_1 < \beta$.
 - **(b)** x_1 is chosen such that $x_1 > \beta$.

[3]

5 (i) Find the equations of the asymptotes of the curve with equation

$$y = \frac{x^2 + 3x + 3}{x + 2}.$$
 [3]

- (ii) Show that y cannot take values between -3 and 1. [5]
- 6 (i) It is given that, for non-negative integers n,

$$I_n = \int_0^1 e^{-x} x^n \, \mathrm{d}x.$$

Prove that, for $n \ge 1$,

$$I_n = nI_{n-1} - e^{-1}. [4]$$

(ii) Evaluate I_3 , giving the answer in terms of e.

[4]

7

The diagram shows the curve with equation $y = \sqrt{x}$. A set of N rectangles of unit width is drawn, starting at x = 1 and ending at x = N + 1, where N is an integer (see diagram).

(i) By considering the areas of these rectangles, explain why

$$\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{N} < \int_{1}^{N+1} \sqrt{x} \, \mathrm{d}x.$$
 [3]

(ii) By considering the areas of another set of rectangles, explain why

$$\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{N} > \int_{0}^{N} \sqrt{x} \, dx.$$
 [3]

(iii) Hence find, in terms of N, limits between which $\sum_{r=1}^{N} \sqrt{r}$ lies. [3]

4726/Jan06 [Turn over

8 The equation of a curve, in polar coordinates, is

$$r = 1 + \cos 2\theta$$
, for $0 \le \theta < 2\pi$.

- (i) State the greatest value of r and the corresponding values of θ . [2]
- (ii) Find the equations of the tangents at the pole. [2]
- (iii) Find the exact area enclosed by the curve and the lines $\theta = 0$ and $\theta = \frac{1}{2}\pi$. [5]
- (iv) Find, in simplified form, the cartesian equation of the curve. [4]
- 9 (i) Using the definitions of $\cosh x$ and $\sinh x$ in terms of e^x and e^{-x} , prove that

$$\sinh 2x = 2\sinh x \cosh x. \tag{4}$$

(ii) Show that the curve with equation

$$y = \cosh 2x - 6 \sinh x$$

has just one stationary point, and find its x-coordinate in logarithmic form. Determine the nature of the stationary point. [8]

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4726

Further Pure Mathematics 2 INSERT for Question 4

Monday 16 JANUARY 2006 Morning 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- This insert should be used to answer Question 4.
- Write your name, centre number and candidate number in the spaces provided at the top of this page.
- Write your answers to Question 4 in the spaces provided in this insert, and attach it to your answer booklet.

4 (i)

	•••••	•••••	•••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	•••••	•••••••	•••••	
***************************************	••••••	•••••	••••••		•••••••••••••••••••••••••••••••••••••••	••••••	••••••	•••••••	••••••	•••••

(ii) (a)	

4726 FP2

MARK SCHEME January 2006

Final Draft

Allow e.g. $3x^2$, 2! etc.

Attempt to simplify

1(i) Use standard $ln(1+3x) = 3x - (3x)^2 + (3x)^3$

 $=3x-9x^2/2+9x^3$

 $(3x)^2$ etc.

M1

(ii) Produce $(1 + x + x^2/2)$

BI

Get $3x - 3x^2/2 + 6x^3$

Mult. 2 reasonable attempts, each of 3 terms (non-zero)

Al√ From their series

SC M1 Reasonable attempt at diff. and replace x = 0 (2 correct)

MI√Put their values into correct Maclaurin expansion

Al cao

(Applies to either/both parts)

2 Write as $f(x) = \pm (x - e^{x})$ $f'(x) = \pm (1 + e^{-x})$ Use $x_{n+1} = x_n - f(x_n)/f'(x_n)$ with $x_0 = 0.5$

Get $x_1 = 0.56631$, $x_2 = 0.56714$ Get $x_3 = 0.567(1)$

B1 Or equivalent

B1 Correct from their f(x)

M1 Clear evidence of N-R on their f, f'

Al $\sqrt{\text{At least one to 4d.p.}}$

A1 cao to 3 d.p.

3 Use A/x + (Bx + C)/(x^2 + 2)

Equate x+6 to $A(x^2 + 2) + (Bx+C)x$ (or equiv.) M1 $\sqrt{}$ Equate to their P.F. (e.g. if

Use x = 0 or equiv. for A (or equate coeff.etc.)

Correctly find one of B,C Get A=3, B=-3,C=1

4(i)

B = 0 or C = 0 used)

MI√ Include cover-up

A1

Αl

B1 Line from x_1 to curve

of step/staircase

B1 Clear explanation; allow use

B1 Then to line

(ii)(a)Converges to $x=\alpha$ (b)Diverges (does not give either root)

B1, B1

BI

5 (i) Give x = -2Attempt to divide out

Get y = x + 1

B1

M1 Giving y = x+k; allow k = 0 here

Al Must be =

(ii) Write as quad. $x^2 + x(3-y) + (3-2y) = 0$ Use for real x, $b^2 - 4ac \ge 0$

Produce quad. inequality in y

Attempt to solve quad. inequality

Get A.G. clearly e.g. graph

M1 SC Differentiate M1

Ml Solve dy/dx=0 M1

MI Get 2 x, y values correct A1

MI Attempt at max/min M1

Justify, e.g. graph, Αl

constraints on y A1

6 (i) Use parts to $(-e^{-x}.x^n - \int -e^{-x}.nx^{n-1} dx)$	M1 Reasonable attempt e.g. +e ^{-x}
Use limits to get e ⁻¹	B1 Allow ±
Tidy correctly to A.G.	A1
(ii) Use $I_3 = 3I_2 - e^{-1}$ $I_2 = 2I_1 - e^{-1}$ $I_1 = I_0 - e^{-1}$	B1 One such seen
Work out $I_0 = 1 - e^{-1}$ or $I_1 = 1 - 2e^{-1}$ Get $6 - 16e^{-1}$	M1,A1 A1
7 (i) Area under graph = $\int \sqrt{x} dx$	B1 Explain RHS (limits need not be specified)
> Sum of areas of rectangles from 1 to N + Area of each rect. = Width x Height = 1 x V	1 B1
(ii) Similarly, area under curve from 0 to N	B1
< sum of areas of rect. from 0 to N	B1
Clear explanation of A.G.	B1
Clear explanation of 71.0.	<i>5</i> .
(iii) Integrate $x^{0.5}$ and use 2 different sets of lim Get area between $^2/_3((N+1)^{1.5}-1)$ and	nits M1,M1
$^{2}/_{3}N^{1.5}$	A1
8 (i) Max. $r = 2$ at $\theta = 0$ and π	B1,B1 Two θ needed (rads only); ignore θ out of range
(ii) Solve $r = 0$ for θ , giving $\theta = \frac{1}{2}\pi$ and $\frac{3}{2}\pi$	M1,A1 Two θ needed (rads only); ignore θ out of range
(iii) Use correct formula with correct w	M1
(iii) Use correct formula with correct r Expand r	MI
Get $\int A + B \cos 2\theta + C \cos 4\theta d\theta$	M1 C≠0
Integrate their expression correctly	Mi C ≠ 0
Get $3\pi/8$	Al cao
GC: 510 6	Al Cao
(iv) Express $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ or similar Use $\cos \theta = x/r$ and/or $\sin \theta = y/r$	M1 M1
Simplify to $(x^2 + y^2)^{1.5} = 2x^2$ or similar	
Sumplify to (x + y) 2x of similar	<u>M1</u> ,A1
9 (i) Correct def ⁿ of cosh x and sinh x	B1,B1
Expand 2 $\frac{1}{4} (e^x - e^{-x}) \frac{1}{4} (e^x + e^{-x})$	M1 Reasonable attempt
Expand $2.\frac{1}{2} (e^x - e^{-x}).\frac{1}{2} (e^x + e^{-x})$ Clearly get $\frac{1}{2} (e^{2x} - e^{-2x})$ to A.G.	A1
0.0000	•••
(ii) Attempt to diff. and solve $dy/dx = 0$	141 5
Use (ii) to get A $\cosh x$ (B $\sinh x + C$)=0	MI Keasonable attempt
	M1 Reasonable attempt M1
Clearly see $\cosh x > 0$ or similar for one	MI
Clearly see $\cosh x > 0$ or similar for one useable factor only	MI Bi
Clearly see $\cosh x > 0$ or similar for one useable factor only Attempt to solve $\sinh x = -C/B$	MI BI M1 Quote or via e ^{-x} correctly
Clearly see $\cosh x > 0$ or similar for one useable factor only Attempt to solve $\sinh x = -C/B$ Get $x = \ln((3+\sqrt{13})/2)$	MI Bi
Clearly see $\cosh x > 0$ or similar for one useable factor only Attempt to solve $\sinh x = -C/B$	MI BI MI Quote or via e ^{-x} correctly AI
Clearly see $\cosh x > 0$ or similar for one useable factor only Attempt to solve $\sinh x = -C/B$ Get $x = \ln((3+\sqrt{13})/2)$ Justify one answer only for $\sinh x = -C/B$	MI BI MI Quote or via e ^{-x} correctly AI BI
Clearly see $\cosh x > 0$ or similar for one useable factor only Attempt to solve $\sinh x = -C/B$ Get $x = \ln((3+\sqrt{13})/2)$ Justify one answer only for $\sinh x = -C/B$	MI BI MI Quote or via e ^{-x} correctly AI BI BI First or second diff ^t test